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ABSTRACT

In this paper, we study a new problem arising from the e-

merging MPEG standardization effort Video Coding for Ma-

chine (VCM)1, which aims to bridge the gap between visu-

al feature compression and classical video coding. VCM is

committed to address the requirement of compact signal rep-

resentation for both machine and human vision in a more or

less scalable way. To this end, we make endeavors in lever-

aging the strength of predictive and generative models to sup-

port advanced compression techniques for both machine and

human vision tasks simultaneously, in which visual features

serve as a bridge to connect signal-level and task-level com-

pact representations in a scalable manner. Specifically, we

employ a conditional deep generation network to reconstruc-

t video frames with the guidance of learned motion pattern.

By learning to extract sparse motion pattern via a predictive

model, the network elegantly leverages the feature represen-

tation to generate the appearance of to-be-coded frames via

a generative model, relying on the appearance of the coded

key frames. Meanwhile, the sparse motion pattern is com-

pact and highly effective for high-level vision tasks, e.g. ac-

tion recognition. Experimental results demonstrate that our

method yields much better reconstruction quality compared

with the traditional video codecs (0.0063 gain in SSIM), as

well as state-of-the-art action recognition performance over

highly compressed videos (9.4% gain in recognition accura-

cy), which showcases a promising paradigm of coding signal

for both human and machine vision.

Index Terms— Video coding for machine, joint feature

and video compression, human vision, sparse motion pattern,

frame generation

1. INTRODUCTION

Video coding aims to compress the videos into a compact for-

m for efficient computing, transmission, and storage. Many

efforts are put into this domain, and over the last three
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Fig. 1. The visual results of the reconstructed videos by

HEVC (left panel) and our method (right panel). Embedded

videos are best viewed in Acrobat Reader.

decades, four coding standards are built to significantly im-

prove the coding efficiency. The latest video codecs, i.e.
MPEG-4 AVC/H.264 [1] and High Efficiency Video Coding

(HEVC) [2] seek to improve the video coding performance

by edging out spatial, temporal and coding redundancies of

video frames. In the past few years, data-driven methods

have been popular and bring in tremendous progress in the

compression task. The latest data-driven methods have large-

ly overpassed performance of the state-of-the-art codecs, e.g.
HEVC by further improving various kinds of modules like

intra-prediction [3], inter-prediction [4, 5], loop filter [6, 7].

These techniques significantly improve the video quality from

the perspective of the signal fidelity and human vision.

Existing coding techniques run into problems when en-

countering big data and video analytics. The massive da-

ta streaming generated everyday from the smart cities needs

to be compressed, transmitted and analyzed to provide high

valuable information, such as the results of action recogni-

tion, event detection. Given this scenario, it is expensive to

perform the analysis on the compressed videos, as the video

coding bit-stream is redundant and existing coding mechanis-

m is not flexible to discard the information that is unrelated

to analytical tasks [8]. Therefore, in the context of big data, it

is still an open problem to perform the scalable video coding,

where the requirement of machine vision is first met and addi-

tional bitrates can be utilized to further improve visual quality

of the reconstructed video progressively and incrementally. It

is an urgent need to obtain a scalable feature representation

that connects the information of low and high-level vision and
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switches the forms between two purposes freely.

The success of deep learning models has opened a new

door. The deep analytic models can extract compact and

high-valuable representations, which can convert the redun-

dant pixel domain information into the sparse feature domain.

In contrast, deep generative models are responsible to produce

the whole images and videos with only the guidance of highly

abstracted and compact features. Supported by these tools, we

can realize the scalable compression of videos and features

jointly, which is close to both practical application demands

in the big data context and accords with the mechanism of hu-

man brain circuits. The most compact and valuable abstracted

features are first extracted via deep analytic models [9, 10, 11]

to support the analytics applications. With these features, we

can locate the place and time where some key events happen,

namely rethinking rough situations. Then, guided by the fea-

tures, other information is partly generated by deep generative

models [12, 13, 14, 15], and partly compressed and decoded

to support the video reconstruction, namely rethinking scene

details. This solution is potential to address the difficulty in

combining video analytics and reconstruction in the big data

streaming, which is the main target of video coding for ma-

chine (VCM). The first step of the process can provide time-

ly analytical results with a small portion of bitrates to fulfill

the need of machine vision and the second stage can further

provide the reconstructed videos with regards to the analyt-

ical results using more bitrates to meet the need of human

vision [16].

Specifically, in this paper, we propose a scalable joint

compression method for both features and videos in surveil-

lance scenes, where a learnable motion pattern bridges the gap

between machine and human vision. The sparse motion pat-

tern is first extracted automatically via a deep predictive mod-

el. After that, the appearance of the currently coded frame is

transfered from the coded key frame with the guidance of the

motion pattern via a deep generative model. The sparse mo-

tion pattern is highly efficient for high-level vision tasks, e.g.
action recognition, and it can also meet the requirement of

human vision. In this way, the total coding cost of features

and videos can be largely reduced.

In summary, the contributions of our paper are summa-

rized as follows:

• To the best of our knowledge, we make the first attempt

towards VCM to compress features and videos jointly,

serving for both machine and human vision. A novel

scalable compression framework is designed with the

aid of predictive and generative models to support both

machine and human vision.

• In our framework, the learned sparse motion pattern

is used as a bridge, which is flexible and largely re-

duces the total coding cost of two kinds of vision.

To promote the analysis performance of human action

recognition, we additionally apply the constraint of the

learned points with the guidance of human skeletons.

• Compared with traditional video codecs, our method

not only achieves much better video quality but al-

so offers significantly better action recognition perfor-

mance at very low bitrates, which showcases a promis-

ing paradigm of coding signal for both human and ma-

chine vision.

The rest of the article is organized as follows. Sec. 2 illus-

trates the pipeline of our proposed joint feature and video

compression. The detailed network architecture for key point

prediction and motion guided target video generation is al-

so elaborated. Experimental results are shown in Sec. 3 and

concluding remarks are given in Sec. 4.

2. JOINT COMPRESSION OF FEATURES AND
VIDEOS

Given a video sequence I = {I1, I2, ..., IN} where N in-

dicates the frame number, it is necessary to compress I for

transmission and storage. In this section, we will first analyze

limitations of traditional video coding methods. Then, we

develop our new framework to compress features and videos

jointly in a scalable way.

2.1. Sequential Compression and Analytics

The traditional video codec targets to optimize the visual

quality of the compressed video from the perspective of signal

fidelity. In this process, all frames are coded. For each frame,

spatial and temporal predictions are utilized to predict the tar-

get frame with existing coded frames to remove the spatial

and temporal redundancy. Then, the prediction residue and

much syntax information are coded for reconstruction at the

decoder side. Though the data can be efficiently compressed

via the latest codecs, the scale of data is still massive as a huge

amount of data is taken all days and weeks. Therefore, it is

intractable to compress and save data with a high quality, and

analyze it later.

It is a reasonable trade-off to compress the data into a

low-quality format. However, existing compression methods

which target at optimizing the human vision are not desir-

able for high-level analytics tasks. If we lower the quality

of the compressed videos, the performance of action recogni-

tion will be largely degraded, As demonstrated in Sec. 3.2,

our method uses only about 1/3 bitrate cost of the traditional

compression method to achieve a better performance in the

action recognition task. Another path that leads to effective

video analytics is to extract and compress features. Howev-

er, in this case, we could not obtain the reconstructed videos.

This also sets barriers to real applications, where the results

usually need to be confirmed by human examiners. There-

fore, we seek to develop a flexible and scalable framework

which compresses the feature at first for machine vision and

reconstructs the video later for human vision with more bits

consumption.
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Fig. 2. The coding pipeline of our proposed joint feature and video compression that serves for both human and machine vision.

2.2. An Overview of Joint Feature and Video Compres-
sion

Fig. 2 has illustrated the overview pipeline of the proposed

joint feature and video compression method. The motivation

lies in the fact that in surveillance scenes, the videos can be

represented as a background layer (static or slow moving) and

moving objects, such as human bodies. Then, the network is

capable of learning to represent a video sequence with the

learned sparse motion pattern, which can indicate the objec-

t motion among frames. In our work, we focus on indoor

surveillance videos with a static background and moving hu-

mans.

At the encoder side, with the captured video frames I =
{I1, I2, ..., IN}, a set of key frames Ik will be first select-

ed and compressed with traditional video codecs and form

the bit-stream BI. The coded key frames convey the ap-

pearance information which includes the background and hu-

man appearances and will be transmitted to the decoder side

to synthesize the non-key frames. Moreover, the learned S-

parse Point Prediction Network (SPPN) extracts sparse key

points from video frames and form a point sequence M =
{m1,m2, ...,mN}. The sparse point sequence can mark the

motion areas in the frames and convey the motion trajectories

of objects along the temporal dimension, which is viewed as

a sparse motion pattern of the video. The point sequence will

also be coded to a bit stream BM for transmission.

At the decoder side, key frames will be first reconstruct-

ed from BI and we indicate the reconstructed key frames as

Îk. For reconstructing remaining non-key frames, the key

points are decompressed as M̂ = {m̂1, m̂2, ..., m̂N} and a

learned Motion Guided Generation Network (MGGN) will

first estimate the motion flow among frames based on the de-

compressed sparse motion pattern. Then, MGGN transfers

the appearance of the reconstructed key frames to remain-

ing non-key frames with the guidance of the estimated mo-

tion flow. Specifically, for the t-th frame to be reconstructed,

we denote its previous key frame as Îk. The target frame is

synthesized as Ît = ϕ(Îk, m̂k, m̂t), where ϕ represents MG-

GN. Finally, the reconstructed key points M̂ and the video

Î = {Î1, Î2, ..., ÎN} can be used respectively for machine

analysis and human vision.

2.3. Detailed Network Architecture Illustration

The critical feature of our joint feature and video compres-

sion framework needs to be capable of capturing the motion

between video frames for both machine analytics and video

reconstruction. There are several kinds of ways to model

video motion, such as dense optical flow [17] or sparse motion

representations based on human poses [14] or unsupervisely

learned key points [15]. In our work, we hope the motion rep-

resentations to be sparse enough for efficient machine analyt-

ics. Therefore, we refer to [15] to predict key points of frames

as the sparse motion pattern, which is compact enough that

costs only a few bits for transmission and storage. For human

vision, motion flow among video frames will be later derived

from the sparse motion pattern to guide the generation of the

target frame.

The framework of the network is shown in Fig. 3. For a

key frame Ik and a target frame It which is to be generated

at the decoder side, their key points will be first predicted by

SPPN, and this sparse motion pattern is later combined with

Ik for estimating the flow map between frames. Then, the

generated flow map will guide the transfer of the appearance

of Ik to the target frame. Details of different parts of the net-

work are described as follows.

Sparse Point Prediction. For an input frame, a sub-network

of the U-Net architecture followed by softmax activations is

used to extract L heatmaps H = {H1, ...HL} for key point

prediction. Each heatmap Hl ∈ [0, 1]
H×W

corresponds to one

key point position pl, which is estimated as follows:

pl =
∑
p∈Ω

Hl [p] p, (1)

where Ω is the set of positions of all pixels. Besides the key

point position, the corresponding covariance matrix Σl is de-

fined as:

Σl =
∑
p∈Ω

Hl [p] (p− pl) (p− pl)
T
. (2)

Authorized licensed use limited to: Peking University. Downloaded on July 12,2020 at 19:19:14 UTC from IEEE Xplore.  Restrictions apply. 



Sparse Point 
Prediction 
Network

D
ef

or
m

at
io

n
Appearance 

Encoder

Flow 
Estimator

It

Ik

Appearance 
Decoder

Motion Guided Generation Network

t̂I

km

tm

HH

Fig. 3. Framework of our proposed joint feature and video

compression, including a sparse point prediction network and

motion guided generation network to extract the sparse mo-

tion pattern and generate the target frame.

The covariance matrix is generated here because it can addi-

tionally capture the correlations between the key point and its

neighbor pixels. Consequently, for each key point, totally 6

float numbers including two numbers indicating the position

and 4 numbers in the covariance matrix are used for descrip-

tion.

For the succeeding usage, the key point description will be

used to generate new heatmaps by a Gaussian-like function.

This operation is done for that the new heatmaps are more

compatible with convolutional operations. Specifically, the

new heatmap H̃l will be generated as follows:

H̃l [p] = exp
(
−α(p− pl)

T
Σ−1

l (p− pl)
)
, (3)

where α is a normalization constant and set to 0.5. After

this progress, two sets of newly generated heatmaps H̃k ={
H̃k

1 , ..., H̃
k
L

}
and H̃t =

{
H̃t

1, ..., H̃
t
L

}
are generated from

frames Ik and It, respectively.

Motion Flow Estimation. With the estimated key points and

newly generated heatmaps, a sub-network in MGGN will be

first used to estimate the motion flow between frames Ik and

It. The source frame Ik is adopted to form the input for it

conveys the appearance information. Meanwhile, the differ-

ence heatmaps ΔH̃ = H̃t−H̃k between two frames are used

to form the input to provide sparse motion information. The

flow estimator will finally output a flow map ξk→t.

Motion Guided Target Frame Generation. The target

frame is generated with a sub-network of the U-Net archi-

tecture. Feature maps of different sizes are extracted by the

appearance encoder and will be bypassed to the appearance

decoder for feature fusion. In order to align the features to the

target frame, features will be previously deformed with the

estimated flow map ξk→t before fusion. Besides, the differ-

ence heatmaps ΔH̃ = H̃t − H̃k is used as side information

that is inputted to the appearance decoder. Then, the target

frame Ît can be generated by the appearance decoder.

Skeleton Guided Point Prediction Loss Function. In [15],

the key points prediction is learned unsupervisely. In our

work, we additionally use human skeleton information to

guide the key point prediction. The skeleton information is

used for its high efficiency in modeling human actions as the

skeleton points cover many human joints, which are highly

correlated to human actions. Consequently, the PKU-MMD

dataset [18] is used in our work for training and testing,

which is a large-scale dataset and contains many human ac-

tion videos. More importantly, human skeletons are available

in this dataset for each human body in the videos.

We sample 16 skeleton points for each human body and

employ an L1 loss function for supervision. The key point

detection loss function is defined as follows:

Lpoint =
1

n

n∑
i=1

16∑
l=1

‖ pil − πi
l ‖1, (4)

where πi
l represents the l-th skeleton point of the human in

the i-th training sample.

Overall Loss Function. Besides the point prediction loss, a

combination of an adversarial and the feature matching loss

proposed in [19] are used for training. The discriminator D
will take H̃t concatenated with either the real image It or

the generated image Ît as its input. The discriminator and

generator losses are calculated as follows:

LD = EIt [(D(It, H̃
t)− 1)2] + E(It,Ît)

[(D(Ît, H̃
t))

2
], (5)

LG = E(It,Ît)
[(D(Ît, H̃

t)− 1)2]. (6)

For a better reconstruction quality, a reconstruction loss

function Lrec is built to keep It and Ît to have similar fea-

ture representations. Lrec is implemented by calculating the

L1 distance between features extracted from It and Ît by the

discriminator. Features outputted by all layers of the discrim-

inator are all used for calculation.

The final loss function is calculated by L =
λpointLpoint + λrecLrec + LG, where λpoint and λrec are re-

spectively set to 20 and 10.

3. EXPERIMENTS

3.1. Experimental Details

PKU-MMD dataset [18] is used to generate the training and

testing samples. In total 3317 clips with 32 frames are sam-

pled for training and 227 clips with 32 frames are sampled for

testing. All frames are cropped and resized to 512× 512 dur-

ing sampling. The skeleton information is also used during

the training process. 16 skeleton points are chosen for each

frame and mapped to the corresponding two-dimensional s-

pace to generate the labels for key point prediction. The net-

work is implemented in PyTorch and the Adam optimizer [20]

is used for training. For each training sample, we randomly

select two frames from a clip to form it.
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In the testing process, we consistently use the first frame

in each clip as the key frame. At the encoder side, the key

frame is coded with the HEVC codec in the constant rate fac-

tor mode. The constant rate factor is set to 32. Besides the

key frame, key points of all frames in the clip are predicted

by SPPN and compressed for transmission. As mentioned in

Sec. 2.3, each key point contains 6 float numbers. For the

two position numbers, a quantization with the step 2 is per-

formed for compression. For the other 4 float numbers be-

longing to the covariance matrix, we calculate the inverse of

the matrix in advance, and then quantize the 4 values with a

step 64. Then, the quantized key point values are further loss-

lessly compressed by the Lempel Ziv Markov chain algorithm

(LZMA) algorithm [21]. At the decoder side, the compressed

key frame and points are decompressed and used to generate

remaining frames.

To verify the efficiency of our coding paradigm, we use

HEVC as the anchor for comparison by additionally com-

pressing all frames with the HEVC codec. The constant rate

factor is firstly consistently set to 51, the highest compression

ratio. Then, the recognition accuracies of using the learned

sparse motion pattern and the compressed videos are com-

pared. To verify the reconstruction quality, we set the con-

stant rate factor to 42 and compare the reconstruction result-

s between HEVC and our method with similar coding cost.

The reconstruction quality is compared both quantitatively

and qualitatively.

3.2. Action Recognition Accuracy
We identify the efficiency of the learned key points for high-

level analytics tasks in the action recognition task. Although

there are 6 numbers for each key point, we only use two quan-

tized position numbers for action recognition. Consequently,

only bits of the compressed position numbers are considered

for calculating the bitrate cost of feature-based action recog-

nition. To align to the bitrate cost of the features, we firstly

resize all clips to the size of 256 ∗ 256 and then use the con-

stant rate factor 51 to compress the testing clips with HEVC.

Table 1. Action recognition accuracy of different methods

and corresponding bitrate costs.

Input Bitrate (Kbps) Accuracy(%)

Compressed Video 16.2 65.2

Compressed Key Point 5.2 74.6

Table 1 has shown the action recognition accuracy and

corresponding bitrate costs of different kinds of data. Our

method can obtain considerable action recognition accuracy

with only 5.2 Kbps bitrate cost. Although we have chosen

the worst coding quality, it still needs 16.2 Kbps to transform

and store the compressed videos. More bitrates cannot bring

too much performance improvement in action recognition on

compressed videos. Unfortunately, the recognition accuracy

even drops by 9.4%.

Table 2. SSIM comparison between different methods and

corresponding bitrate costs.

Codec Bitrate (Kbps) SSIM

HEVC 33.0 0.9008

Ours 32.1 0.9071

3.3. Video Reconstruction Quality
The video reconstruction quality of the proposed method is

also compared with that of HEVC. During the testing phase,

we compress the key frames with the constant rate factor 32
to maintain a high appearance quality. The bitrate is calcu-

lated by jointly considering the compressed key frames and

key points. As for HEVC, we compress all frames with the

constant rate factor 44 to achieve an approaching bitrate cost.

Table 2 has shown the quantitative reconstruction quality

of different methods. SSIM values are adopted for quanti-

tative comparison. It can be observed that, our method can

achieve better reconstruction quality than HEVC with a fewer

bitrate cost. Subjective results of different methods are shown

in Fig. 4. There are obvious compression artifacts on the re-

construction results of HEVC, which heavily degrade the vi-

sual quality. Compared with HEVC, our method can provide

far more visually pleasing results.

4. CONCLUSION

In our work, we propose a novel framework to bridge the gap

between compression for features and videos. A condition-

al deep generation network is designed to reconstruct video

frames with the guidance of a learned sparse motion pattern.

This representation is highly compact and also effective for

high-level vision tasks, e.g. action recognition. Therefore, it

is scalable to meet the requirements of both machine and hu-

man vision, which reduces the total coding cost. Experimen-

tal results demonstrate that our method can obtain superior

reconstruction quality and action recognition accuracy with

fewer bitrate costs compared with traditional video codecs.
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